Name of the Faculty : Sh. Krishan Lal Discipline : Computer Engg.

Semester : IIIrd

Subject : DIGITAL ELECTRONICS

Lesson Plan Duration : Aug 24

Work Load (Lecture/ Practical) per week (in hours): 03 HOURS (Lecture)

| Week            |             | Theory                                                                                                          | Practical                                                   |
|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                 | Lecture day | Topic (including assignment/ test)                                                                              | Topic                                                       |
| 1 <sup>st</sup> | 1           | Introduction about subject.                                                                                     | Introduction about instruments to be                        |
|                 | 2           | Distinction between analog and digital signal. Applications and advantages of digital signals.                  | used in practical work.                                     |
|                 | 3           | Binary, octal and hexadecimal number system.                                                                    |                                                             |
| 2 <sup>nd</sup> | 4           | Conversion from decimal and hexadecimal to binary and vice-versa.                                               | Verification and interpretation of                          |
|                 | 5           | Binary addition and subtraction including binary points. 1's and 2's complement method of addition/subtraction. | truth tables for<br>AND, OR, NOT<br>NAND, NOR and           |
|                 | 6           | Concept of code, weighted and non-weighted codes, examples of 8421, BCD, excess-3 and Gray code.                | Exclusive OR (EXOR) and Exclusive NOR(EXNOR) gates          |
|                 | 7           | Concept of parity, single and double parity and error detection                                                 | Realisation of logic functions                              |
| 3 <sup>rd</sup> | 8           | Concept of negative and positive logic                                                                          | with the help of NAND or NOR                                |
|                 | 9           | Definition, symbols and truth tables of NOT, AND, OR, NAND, NOR, EXOR Gates                                     | gates                                                       |
|                 | 10          | NAND and NOR as universal gates.                                                                                | To design a half adder and                                  |
|                 | 11          | Introduction to TTL and CMOS logic families                                                                     | full adder                                                  |
| 4 <sup>th</sup> | 12          | Postulates of Boolean algebra, De Morgan's Theorems.                                                            | using XOR and NAND gates and verification of its operation. |
| 5 <sup>th</sup> | 13          | Implementation of Boolean (logic) equation with gates                                                           | To design a half adder and full                             |
|                 | 14          | Karnaugh map (upto 4 variables) and simple application in developing combinational logic circuits               | adder using XOR and NAND gates                              |

|                  |    |                                                                         | and verification of                                                                                                                                                                                                                      |
|------------------|----|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 15 | Half adder and Full adder circuit, design and implementation.           | its operation.                                                                                                                                                                                                                           |
| 6 <sup>th</sup>  | 16 | 4 bit adder circuit                                                     | Verification of truth table for positive edge triggered, negative edge triggered, level triggered IC flip-flops (At least one IC each of D latch, D flip-flop, JK flip-flops).  Verification of truth table for encoder and decoder ICs. |
|                  | 17 | Four bit decoder circuits for 7 segment display and decoder/driver ICs. |                                                                                                                                                                                                                                          |
|                  | 18 | Basic functions and block diagram of MUX and DEMUX with different ICs   |                                                                                                                                                                                                                                          |
| 7 <sup>th</sup>  | 19 | Basic functions and block diagram of Encoder                            |                                                                                                                                                                                                                                          |
|                  | 20 | Concept and types of latch with their working and applications          |                                                                                                                                                                                                                                          |
|                  | 21 | Operation using waveforms and truth tables of RS, T, D F/F.             |                                                                                                                                                                                                                                          |
| 8 <sup>th</sup>  | 22 | Master/Slave JK flip flops. Race around condition.                      | Verification of<br>truth table for Mux<br>and DeMux                                                                                                                                                                                      |
|                  | 23 | Difference between a latch and a flip flop                              |                                                                                                                                                                                                                                          |
|                  | 24 | Introduction to Asynchronous counters.                                  |                                                                                                                                                                                                                                          |
| 9 <sup>th</sup>  | 25 | Introduction to synchronous counters.                                   | To design a 4 bit SISO, SIPO, PISO, PIPO shift registers using JK/D flip flops and verification of their operation.                                                                                                                      |
|                  | 26 | Binary counters                                                         |                                                                                                                                                                                                                                          |
|                  | 27 | Divide by N ripple counters                                             |                                                                                                                                                                                                                                          |
| 10 <sup>th</sup> | 28 | Decade counter, Ring counter                                            | To design a 4 bit ring counter and verify its operation.                                                                                                                                                                                 |
|                  | 29 | Introduction and basic concepts including shift left and shift right.   |                                                                                                                                                                                                                                          |
|                  | 30 | Serial in parallel out, serial in serial out shift register.            |                                                                                                                                                                                                                                          |
| 11 <sup>th</sup> | 31 | Parallel in serial out, parallel in parallel out shift register.        | Use of<br>Asynchronous<br>Counter ICs (7490<br>or 7493)                                                                                                                                                                                  |
|                  | 32 | Universal shift register                                                |                                                                                                                                                                                                                                          |
|                  | 33 | Working principle of A/D converters                                     |                                                                                                                                                                                                                                          |
| 12 <sup>th</sup> | 34 | Brief idea about different techniques of A/D conversion and             | To design and                                                                                                                                                                                                                            |
| L                |    | •                                                                       | <b>-</b>                                                                                                                                                                                                                                 |

|                  |    | study of : Stair step Ramp A/D converter                      | verify<br>ADC                  |
|------------------|----|---------------------------------------------------------------|--------------------------------|
|                  | 35 | Dual Slope A/D converter                                      |                                |
|                  | 36 | Successive Approximation A/D Converter                        |                                |
|                  | 37 | Working principle of D/A converters                           | To design and verify DAC       |
| 13 <sup>th</sup> | 38 | Binary Weighted D/A converter                                 |                                |
|                  | 39 | R/2R ladder D/A converter                                     |                                |
| 14 <sup>th</sup> | 40 | Applications of A/D and D/A converter.                        | To design and verify ALU 74181 |
|                  | 41 | Memory organization, classification of semiconductor memories |                                |
|                  | 42 | RAM, ROM, PROM, EPROM, EEPROM, static and dynamic RAM         |                                |
|                  | 43 | introduction to 74181 ALU IC                                  | Internal Viva of all           |
| 15 <sup>th</sup> | 44 | Revision                                                      | Practical.                     |
|                  | 45 | Revision                                                      |                                |